
cubeevent(1)

Name
cubeevent - list events captured by the Cube "event recorder" hardware

Synopsis
cubeevent  [-v|--verbose] [--include-pattern=PATTERN]…
           [--output-dir=DIRECTORY [--force-overwrite]]
           [--format=FORMAT]
           file | directory…

cubeevent  [-h|--help] [--version] [--sysinfo]

Description
An event recorder is a specialized Cube data logger variant designed to record the precise time of
discrete (seismic) events. Some typical sources for these events are sledgehammer, drop weight or
explosives. The cubeevent program is used to readout information from event recorder files.

Calling cubeevent with one or more event recorder files as argument will by default return a short
list of all recorded and detected events in those files. If a directory is given at the command line,
cubeevent will search recursively for input files inside the directory. The report is by default
written to standard output (i.e. console) or saved in an output directory (use option --output-dir).
Different report variants (EVENTS, BATTERY, …) are available and can be selected using the
--format option.



The files written by event recorder hardware are essentially just a specialized
variant of the "normal" Cube data logger file format. It is therefore feasible to use
other GIPPtools such as e.g. cubeinfo or cube2ascii to access the contained time
series data as well. However, only the cubeevent utility provides complete access
to the extra information (e.g. automatically detected events or battery voltage) also
contained in event recorder files.

Options
The program pretty much follows expected Unix command line syntax. Some command line
options have two variants, one long and an additional short one (for convenience). These are
shown below, separated by commas. However, most options only have a long variant. The ‘=’ for
options that take a parameter is required and can not be replaced by a whitespace.

1



-h, --help

Print a brief summary of all available command line options and exit.

--version

Print the cubeevent release information and exit.

--sysinfo

Provide some basic system information and exit.

-v, --verbose

This option increases the amount of information given to the user during program execution. By
default, (i.e. without this option) cubeevent only reports warnings and errors. (See the
diagnostics section below.)

--include-pattern=PATTERN

Only process files whose filename matches the given PATTERN. Files with a name not matching
the search PATTERN will be ignored. This option is quite useful to speed up recursive searches
through large subdirectory trees and can be used more than once in the same command line.

You can use the two wild card characters (* and ?) when specifying a PATTERN (e.g. *.Q12). Or
alternatively, you can also use a predefined filter called GIPP that can be used to exclude all files
not following the usual GIPP naming convention for files recorded by (Cube) event recorder
hardware.


The search PATTERN is only applied to the filename part and not to the full
pathname of a file.

--output-dir=DIRECTORY

Save the resulting reports to this DIRECTORY. The directory must already exist and be writable!
Already existing files in that directory will not be overwritten unless the option --force
-overwrite is used as well.

--force-overwrite

If this option is used, already existing files in the output directory will be overwritten without
mercy!

The default behavior however is not to overwrite already existing files. Instead, a new file is
created with an additional number in between filename and extension.

--format=FORMAT

Select one of the following predefined output formats:

EVENTS

List all recorded/triggered events. The output consists of a sequential event number, the
event time and information about the age of the GPS fix that was used to determine the event
time. Example:

2



# -------------------------------------------------
# recording unit: c0000     file name: 03301038.000
# -------------------------------------------------
Event #1  2017-03-30T10:39:00.795750  (GPS ok)
Event #2  2017-03-30T10:41:00.000031  (GPS 14s old)
Event #3  2017-03-30T10:43:00.000313  (GPS ok)

Events are simply numbered in the order they were read from the file input. The information
about the age of the GPS fix allows a rough assessment of the GPS reception during the
recording.


The cubeevent utility does not provide more detailed GPS information
because this is already available via the cubeinfo program. Simply use the
--format=GPS command line option of the cubeinfo utility.

If no --format command line option is used, the program will default to the EVENTS output
format!

ALL

This mode will output ALL samples recorded by the event recorder. The output will consist of
the recording time of the sample, the two primary recording channels (usually the electric
signal from the cable used to trigger the explosion and a seismic signal from a geophone
located nearby the source) as well as the two auxiliary channels tracking the state of the
recording button (1 - pressed, 0 - unpressed) and marking the first sample after the detected
event. Example:

# -------------------------------------------------
# recording unit: c0000     file name: 03301038.000
# -------------------------------------------------
2017-03-30T10:39:00.793000    -195  174  0  0
2017-03-30T10:39:00.794000    -124  -66  0  0
2017-03-30T10:39:00.795000     -88  476  1  0
2017-03-30T10:39:00.796000  -25122   97  1  0
2017-03-30T10:39:00.797000  -17719   80  1  1
2017-03-30T10:39:00.798000  -29410  421  1  0
2017-03-30T10:39:00.799000  -27118   41  1  0
2017-03-30T10:39:00.800000  -26366  121  0  0
2017-03-30T10:39:00.801000  -25775  313  0  0

REC

The output format is identical to the ALL format described above. However, only samples
recorded while "recording" button was pressed (i.e. the value of the fourth column is 1) are
written. This will reduce the returned information by the ALL output format to the
"interesting parts".

BATTERY

Report the voltage of the internal battery over time. This is intended for diagnostic purposes

3



only.

Environment
The following environment variables can optionally be used to influence the behavior of the
GIPPtool utilities.

GIPPTOOLS_HOME

This environment variable is used to find the location of the GIPPtools installation directory. In
particular, the Java class files that make up the GIPPtools are expected to be in the java
subdirectory of GIPPTOOLS_HOME.

GIPPTOOLS_JAVA

The utilities of the GIPPtools are written in the programming language Java and consequently
need a Java Runtime Environment (JRE) to execute. Use this variable to specify the location of
the JRE which should be used.

GIPPTOOLS_OPTS

You can use this environment variable for additional fine-tuning of the Java runtime
environment. This is typically used to set the Java heap size available to GIPPtool programs.

GIPPTOOLS_LEAP

The GIPPtools require up-to-date leap second information to correctly interpret Cube files.
Usually, this information is obtained from the leap-seconds.list file located in the config
subdirectory of the GIPPtools installation directory. This environment variable can be used to
provide a more up-to-date leap second list to GIPPtool programs.

It is usually not necessary to define any of those variables as suitable values should be selected
automatically. However, if the automatic detection build into the start script fails, or you need to
choose between different GIPPtool or Java runtime releases installed on your computer, these
environment variables might become quite helpful to troubleshoot the situation.

Diagnostics
Occasionally, the cubeevent utility will produce user feedback. In general, user messages are
classified as INFO, WARNING or ERROR. The INFO messages are only displayed when the --verbose
command line option is used. They usually report about the progress of the program run, give
statistical information or write a final summary.

More important are WARNING messages. In general, they warn about (possible) issues that may
influence the outcome. Although the program will continue with execution, you certainly should
check the results carefully. You might not have gotten what you (thought you) asked for. Finally,
ERROR messages inform about problems that can not be resolved automatically. Program execution
usually stops and the user must fix the cause of the error first.

4



Exit codes
Use the following program exit codes when calling cubeevent from scripts or other programs to see
if cubeevent finished successfully. Any non-zero code indicates an ERROR!

0

Success.

64

Command line syntax or usage error.

65

Data format error. (The input was not a valid Cube recording.)

66

An input file did not exist or was not readable.

70

Error in internal program logic.

74

I/O error.

99

Other, unspecified errors.

Examples
1. To obtain a short list of all recorded and detected events contained in the event recorder file

called recording.cube, you simply use the following:

cubeevent recording.cube

Files
$GIPPTOOLS_HOME/bin/cubeevent

The cubeevent "program". Usually just a copy of or symbolic link pointing to the standard
GIPPtools start script.

$GIPPTOOLS_HOME/bin/gipptools

The GIPPtools start script. Almost all utilities of the GIPPtools package are started from this shell
script.

5



See also
gipptools(1), cube2ascii(1), cube2mseed(1), cube2segy(1), cubeinfo(1), mseed2ascii(1),
mseed2mseed(1), mseed2pdas(1), mseed2segy(1), mseedcut(1), mseedinfo(1), mseedrecover(1),
mseedrename(1)

Bugs and caveats
None so far.

6


	cubeevent(1)
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Exit codes
	Examples
	Files
	See also
	Bugs and caveats

