
Name
cubeinfo — summarize the content of a Cube recording

Synopsis
cubeinfo [-v | --verbose] [--include-pattern=PATTERN]... [--output-dir=DIRECTORY [--
force-overwrite]] [--format=FORMAT] [file | directory]...

cubeinfo [-h | --help] [--version] [--sysinfo]

Description
Cubeinfo reads from a file (or standard input) and returns a short textual report of the content of the read Cube
recording. If a directory is given instead, cubeinfo searches recursively for input files inside that directory.
The report is written to standard output (i.e. console) or saved in an output directory (use option --output-dir).
Different report variants (SUMMARY, DUMP, ...) are predefined and can be selected using the --format option.

Options
The program pretty much follows expected Unix command line syntax. Some of the command line options have
two variants, one long and an additional short one (for convenience). These are shown below, separated by com-
mas. However, most options only have a long variant. The ‘=’ for options that take a parameter is required and
can not be replaced by a whitespace.

-h, --help

Print a brief summary of all available command line options and exit.

--version

Print the cubeinfo release information and exit.

--sysinfo

Provide some basic system information and exit.

-v, --verbose

This option increases the amount of information given to the user during the program execution. By default
(i.e. without this option) cubeinfo only reports warnings and errors. (See the diagnostics section below.)

--include-pattern=PATTERN

Only read data from Cube files whose filename matches the given PATTERN. Files with a name not matching
the search PATTERN will be ignored. This option is quite useful to speed up recursive searches through large
subdirectory trees and can be used more than once in the same command line.

You can use the two wild card characters ('*', '?') when specifying a PATTERN (e.g. '*.123'). Or alter-
natively, you can also use a predefined filter called GIPP that can be used exclude all files not following the
usual GIPP naming convention for files recorded by Cubes.

The given search PATTERN is only applied to the filename part and not to the full pathname
of a file.

--output-dir=DIRECTORY

Save the resulting reports to this DIRECTORY. The directory must already exist and be writable! Already
existing files will not be overwritten unless the option --force-overwrite is used as well.

1

cubeinfo

--force-overwrite

If this option is used, already existing files in the output directory will be overwritten without mercy!

The default behavior however is not to overwrite already existing files. Instead a new file is created with an
additional number in between filename and extension.

--format=FORMAT

Select one of the predefined output formats:

INFO Give a brief, minimal description of the content of the Cube recording. The report will contain
the Cube instrument id and configuration, battery levels, as well as the approximate start and
stop time of the recording. This is the default output format.

SUMMARY A slightly more verbose description of the content that also includes statistics about how many
different data blocks (header, trailer, samples, GPS, ...) are contained in the Cube recording.

This output format requires that the Cube file must be read completely, which may
take a few seconds for extensive recordings.

GPS List the content of all GPS blocks contained in the Cube recording. This output format is espe-
cially useful to obtain the actual position of a Cube while it was recording. You can also get a
rough idea about the quality of the received GPS signal.

The returned information will depend on the build-in/connected clock hardware, which differs
between Cube recorders. Usually the report contains at least the Cube block number and the
time contained in the GPS block. Additional information is provided on an "as available" base
and may include the number of leap seconds between GPS and UTC time (as reported by the
GPS satellite and/or as officially announced by the International Earth Rotation and Reference
Systems Service, IERS [http://www.iers.org]), the type of the GPS fix (2D, 3D, ...), the position
of the Cube (latitude, longitude and maybe elevation), temperature (measured by the clock hard-
ware), the number of satellites received, and/or the age of the GPS fix ("less than 10s old").

The time information provided by the GPS output format is not identical to the
recording time of any sample! Additional time corrections (depending amongst
others on Cube hardware and configured sample rate) must be applied first to obtain
the (precise) recording time.

DEBUG Returns a textual representation of every data block contained in the Cube file. This rather volu-
minous report includes everything there is and should probably be used for debugging purpose
only!

Environment
The following environment variables can optionally be used to influence the behavior of the various GIPPtool
utilities during startup.

GIPPTOOLS_HOME This environment variable is used to find the location of the GIPPtools installation direc-
tory. In particular, the Java class files that make up the GIPPtools are expected to be in the
'java' subdirectory of GIPPTOOLS_HOME.

GIPPTOOLS_JAVA The utilities of the GIPPtools are written in the programming language Java and conse-
quently need a Java Runtime Environment (JRE) to execute. Use this variable to specify
the location of the JRE which should be used.

GIPPTOOLS_OPTS You can use this environment variable for additional fine-tuning of the Java runtime envi-
ronment. This is typically used to set the Java heap size available to GIPPtool programs.

2

http://www.iers.org
http://www.iers.org

cubeinfo

GIPPTOOLS_LEAP The GIPPtools require up-to-date leap second information to correctly interpret Cube files.
Usually, this information is obtained from the leap-seconds.list file located in the
config subdirectory of the GIPPtools installation directory. This environment variable
can be used to provide a more up-to-date leap second list to GIPPtool programs.

It is usually not necessary to define any of those variables as suitable values should be selected automatically.
However, if the automatic detection build into the start script fails or you need to choose between different GIPP-
tool or Java runtime releases installed on your computer, these environment variables might become quite helpful
to troubleshoot the situation.

Diagnostics
Cubeinfo occasional will produce user feedback. In general, user messages are classified as INFO, WARNING
or ERROR. The INFO messages are only displayed when the --verbose command line option is used. They
usually report about the progress of the program run.

More important are WARNING messages. In general, they warn about (possible) problems that may influence the
output. Although the program will continue with execution, you certainly should check the results carefully. You
might not have gotten what you (thought you) asked for. Finally, ERROR messages inform about problems that
can not be resolved automatically. Program execution usually stops and the user must fix the problem first.

Exit codes
Use the following program exit codes when calling cubeinfo from scripts or other programs to see if cubeinfo
finished successfully. Any non-zero code indicates an ERROR.

0 Success.

64 Command line syntax or usage error.

65 Data format error. (The input was not a valid Cube recording.)

66 Input file did not exist or could not be opened.

70 Error in internal program logic.

74 I/O error.

99 Other, unspecified errors.

Examples
1. To learn about the content of the single Cube file called recording.cube, you simply use one of the fol-

lowing:

cubeinfo recording.cube

cubeinfo < recording.cube

The first variant will usually be much faster as cubeinfo will jump directly from the beginning of
the file, where it reads the "header block", to the end of the file where the "trailer block" required
by the INFO report is located. The second variant does not have that option as it must always
read the complete data stream piped in from console. There is, however, no significant difference
when requesting a report format other than the default INFO format as the complete recording
must be read for all other predefined report formats.

2. To get information about how many data blocks are contained in the Cube file 02161251.034 use the SUM-
MARY output format:

cubeinfo --format=SUMMARY 02161251.034

3

cubeinfo

This will not only return a table of the fields contained in the header and trailer block of the Cube file but also
count every data block contained in the file and report those statistics too.

Using the SUMMARY output format is a convenient method to quickly check if the Cube file is
"complete". If you suspect that your Cube recording was cut-off early or might be otherwise
damaged you can look for header, trailer and end-of-file block counts. A sound Cube
file should contain exactly one of each!

3. To find out at which coordinates the Cube was placed when it recorded the file 02161251.034 you use GPS
report format:

cubeinfo --format=GPS 02161251.034

The resulting output contains, besides other information, the coordinates (marked as lat and lon) of the Cube
in degrees. Depending on the build-in GPS hardware additional information about elevation might or might
not be available.

Files
$GIPPTOOLS_HOME/bin/cubeinfo

The cubeinfo "program". Usually just a symbolic link pointing to the standard GIPPtools start script.

$GIPPTOOLS_HOME/bin/gipptools

The GIPPtools start script. Almost all utilities of the GIPPtools package are started from this shell script.

See also
GIPPtools(1), cube2ascii(1), cube2mseed(1), cube2segy(1), cubeevent(1), mseed2ascii(1), mseed2mseed(1),
mseed2pdas(1), mseed2segy(1), mseedcut(1), mseedinfo(1), mseedrecover(1), mseedrename(1)

Bugs and Caveats
• If a Cube file was cut-off early (i.e. it does not contain a trailer block at the end of the recording) no information

about the end of the recording can be given! Although this should be obvious it always seems to surprise the user.

4

	cubeinfo

