
Name
cube2mseed — convert Cube data to miniSEED format

Synopsis

cube2mseed [-v | --verbose] [--include-pattern=PATTERN]... [--trace-start=TIMEMO-
MENT] [--trace-stop=TIMEMOMENT] [--trace-length=DURATION] [--trace-offset=SHIFT]
[--events=EVENTFILE] [--timing-control=ALGORITHM] [--fringe-samples=MODE] [--re-
sample=ALGORITHM] [--output-dir=DIRECTORY [--force-overwrite]] [--byte-order=OR-
DER] [--record-size=N] [--encoding=CODEC] file | directory ...

cube2mseed [-h | --help] [--version] [--sysinfo]

Description

The cube2mseed utility reads Cube data from one or more files and converts them to miniSEED format. If an
input directory is given as argument, cube2mseed searches recursively for Cube files inside that directory. The
search can be shortened to contain only files with a name matching patterns given by the --include-pattern
option.

After the initial search for available Cube files is completed, the program will begin to index the data contained in
the respective files. This step is necessary so that the program later knows of all Cube files belonging to the same
continuous trace and about the correct chronological order.

As soon as the end of a continuous time series is detected, the utility will begin to work through the (internal) lists
of time windows that were requested by the user via the options --events, --trace-start, --trace-
stop, etc. The required samples are read from the Cube files, resampled and converted to the miniSEED format.
Finally, the result is written directly to standard output (i.e. console) or saved in an output directory (use option --
output-dir). Cube2mseed then returns back again to scanning through the Cube input for more continuous
recordings, processing one trace after another.

Options

The program pretty much follows expected Unix command line syntax. Some of the command line options have
two variants, one long and an additional short one (for convenience). These are shown below, separated by com-
mas. However, most options only have a long variant. The equal sign (‘=’) for options that take a parameter is
required and can not be replaced by a whitespace.

-h, --help

Print a brief summary of all available command line options and exit.

--version

Print the cube2mseed release information and exit.

--sysinfo

Provide some basic system information and exit.

-v, --verbose

This option increases the amount of information given to the user during the program execution. By default
(i.e. without this option) cube2mseed only reports warnings and errors. (Also see the diagnostics section
below.)

1

cube2mseed

--include-pattern=PATTERN

Only read data from Cube files whose filename matches the given PATTERN. Files with a name not matching
the search PATTERN will be skipped and ignored. This option is quite useful to speed up recursive searches
through large subdirectory trees and can be used more than once in the same command line.

You can use the two wild card characters ('*' and '?') when specifying an include PATTERN (e.g. '*.123').
Or alternatively, you can also use a predefined filter called GIPP that can be used to exclude all files not
following the usual GIPP naming convention for files recorded by Cubes.

The given search PATTERN only applies to the filename but not to the names of the (sub-)di-
rectories inside which the Cube file is located.

The following command line options are all used to specify an input time window for reading data from the Cube
files. It is considered an error to use --trace-start, --trace-stop and --trace-length all at the
same time. At most two of the three options may be used together. Also, the option --trace-length cannot
be used alone. It needs a --trace-start or --trace-stop as anchor.

--trace-start=TIMEMOMENT

Begin converting Cube data at this moment in time. The format for the TIMEMOMENT string is YYYY-
MM-DDTHH:MM:SS.ssssss where YYYY-MM-DD represents the date and HH:MM:SS.ssssss the time
(fractions of seconds will be rounded to microsecond accuracy). The letter 'T' in between date and time is used
to distinguish between date and time part and must be given as well. Example: To begin reading samples at
1pm on March 27th, 2007 use the TIMEMOMENT string --trace-start=2007-03-27T13:00:00.

--trace-stop=TIMEMOMENT

Stop processing time series data after this moment in time. The format for the TIMEMOMENT string is the
same as with the --trace-start option.

--trace-length=DURATION

Stop processing samples after this time span. The DURATION is given in seconds and formatted as
SS.ssssss. Again, fractions of seconds will be rounded to microsecond accuracy. Example: To extract 10
minutes of data use --trace-length=600.

A trace length of 5 minutes will be used as default setting if no trace length option is given but a singular --
trace-start or --trace-stop option is encountered.

--trace-offset=SHIFT

Use this option to shift the whole time window defined by the command line options above. This option exists
purely for convenience reasons as it would be easy to obtain the same effect by adding SHIFT seconds to
the trace start and stop times manually. In other words, using --trace-offset just spares you doing the
math when you have a list of event times (e.g. from an earthquake catalog) but would like to extract a few
seconds of data before the event as well.

The format of the trace offset value is SS.ssssss and it is given in seconds. Negative number shift the
window towards earlier times, positive number "delay" the window. The total length of the time window is
not affected by this option.

--events=EVENTFILE

In addition to the four time window options described above, it is also possible to use an event file to define
many time windows all at once. Using an event file makes it possible to convert more than one time window
per program run. Each line in the event file must begin with the start time of a time window that should
be converted to miniSEED format. Optionally, the length and offset of the time window may follow in the
second and third column.

2

cube2mseed

The event file contains up to three columns separated by spaces or tabulators. The three columns are:

Column #1 Start time of the time window. Analog to the --trace-start command line option. This
column is mandatory.

Column #2 Length of the time window. Analog to the --trace-length command line option. If this
column is missing a (default) trace length of 2 minutes is processed.

Column #3 An additional shift/offset is applied to the time window. Analog to the --trace-offset
command line option. This column is also optional.

Empty lines in the file are ignored. Everything following a '#' character (up to the end of the line) is considered
to be a comment and is skipped as well. Columns are counted from the beginning of the line. This means you
cannot define a trace offset (column #3) without having a trace length (column #2) in the line first!

The use of an event file is completely independent from the trace start, stop, length or offset
command line options. Especially, the --trace-length option only applies to time windows
given via --trace-start or --trace-stop but never to time windows defined inside
an event file!

Ignoring the nitty-gritty implementation details of Cube file format, Cube recordings basically consist of a con-
tinuous stream of sample (amplitude) values, where occasional a single sample is additionally timestamped with
the precise time of its recording (taken from GPS). MiniSEED files, however, are organized in fixed sized records,
each containing it's own header (including the start time of the first sample in the record) and of course the sample
data. The following command line options are used to control how the time information contained in the Cube
files is transported into the miniSEED data format.

--timing-control=ALGORITHM

Cube data loggers keep track of the time by tagging selected sample values with precise time information.
These (time) tagged samples are the foundation of the overall timing accuracy of the recording. To ensure a
high precision it is essential to verify the integrity and premium of the recorded time tags. Use this option to
select one of the following quality control algorithms:

LLS Compute a "local least squares" (LLS) approximation to detect outliers and other dubious time in-
formation.

The algorithm will determine the timing quality from the squared residual error ("misfit") of an indi-
vidual time tag compared to a fitted line through the respective surrounding time tags. Any unexpect-
ed large misfit is a good indicator for the presence of a "bad" time tag (e.g. an outlier). All suspicious
time tags are excluded from further processing.

This is the default timing quality control algorithm.

RULE Do a rule-based evaluation of the time tags. The rules are predefined and hard-coded into the program.
They were determined by trial and error.

NONE Skip quality control altogether! This will use any available timing information without further qual-
ification.

FAKE This "quality control" algorithm will completely overwrite any time information recorded in a Cube
trace with a made-up fake time. (All trace start times are set to 1970-01-01 00:00.) Obviously,
this will completely screw up the timing information! Use it at your own risk.

Using the FAKE time algorithm will only succeed if the --fringe-sam-
ples=NOMINAL command line option is used as well.

The main advantage of the LLS algorithm is its flexibility. It was designed to adapt to different situations and
to handle different time keeping hardware as well. The RULE based algorithm is faster and much simpler.

3

cube2mseed

However, the fixed rule set only works effectively for anticipated situations and is limited to the current
build-in and well-known GPS hardware. Future Cube generations e.g. will probably require an updated set of
rules to reliably detect bad time tags due to different time keeping hardware. The NONE "algorithm" basically
disables any timing quality control. It should only be used if you can trust all time tags unconditionally (or do
not care). Finally, the FAKE time algorithm is intended for worst case scenarios only, where a user absolutely
must recover a Cube data stream that cannot be processed normally due to total lack of (recorded) timing
information. By adding a fake time the Cube file(s) becomes "processable" again, although at the price of a
completely made-up time information.

In addition to the above listed algorithms, recorded time tags are also screened for overall data integrity (range
check, checksum) and completeness. Also, there a certain hardware limitation common to all recorders of the
Cube family that occasionally cause individual time tags to be discarded. This is done transparently in the
background and before any of the above algorithms are applied. This cannot be influenced by the user!

--fringe-samples=MODE

Determines how to treat samples that were recorded before the first GPS time fix or after the last GPS time
fix taken by the Cube unit. Determining the precise recording time of these "fringe samples" is problematic
because without a second time tag on the other side of the sample, the precise sampling rate inside that segment
cannot be computed. Valid options are:

SKIP Simply exclude all samples without good time control from the conversion. (Default)

NOMINAL Include fringe samples assuming a perfect nominal sample rate (e.g. 50 Hz, 100 Hz, 200 Hz, ...;
as configured in the Cube recorder setup).

CONSTANT Include fringe samples assuming a constant (linear) clock drift over the whole recording. The
clock drift is calculated from the very first and last available GPS fix in the recording.

Usually, a Cube recording contains only a few seconds of data before the very first GPS time fix occurs. At the
end of recording, the time without GPS fix depends on the recorder configuration. (GPS running continuous
or in cycled mode? How long is the cycle?) So, unless you power down and pick up the Cube unit immediately
after the recording there should be no problem to just skip and ignore all fringe samples, which is the default
behavior.

The situation is different however, when the Cube is deployed in locations without (reliable) GPS reception,
e.g. in water or underground in a tunnel. Especially, if the Cube runs out of power before it can obtain a last
GPS fix. Here it might become important to include any recorded sample despite the lack of good (GPS) time
control. For these cases the NOMINAL and CONSTANT mode are intended.

--resample=ALGORITHM

The sampling rate at which a Cube records data is derived from a build-in, high precision crystal oscillator.
But despite using high-quality components, a tiny arbitrary offset from its nominal frequency remains. Causes
for the offset include e.g. component aging and changes in temperature that alter the piezoelectric effect in the
crystal oscillator. Unfortunately, this results in a slightly varying sampling rate during the recording that needs
to be compensated by resampling the time series. This command line option selects the resampling algorithm.

It is highly recommended that you stick to the default SINC algorithm unless you have special
needs and know what you do!

SINC Resample the Cube data using a windowed 'sinc' interpolation with a normalized Black-
mann-Nuttall window. By default the window width is set to 25. (Resulting in a filter kernel of
2x25+1=51 points.)

The width of the Blackmann-Nuttall window can be adjusted by appending the desired width to
the SINC keyword (separated by a single comma; no spaces). Please see below for an example.

LINEAR Use a basic linear interpolation between samples.

4

cube2mseed

NONE Simply copy the Cube input time series to the output without any modification to the sample
amplitudes at all! The only modification done by this algorithm is to (slightly) shift the samples
along the time axis. The recording time of the very first sample will be used as start time of the
time series. All following samples will be time shifted such that a "perfect" sample period results.
Obviously, the absolute timing error increases as the converted time series grows in length!

This NONE "resampler" simply fudges the recording time of the input samples! There
is absolutely no resampling done by this algorithm (in a mathematical sense).

It was added to the program solely to provide some backward compatibility to earlier
versions of cube2mseed, before proper resampling was implemented (i.e. all GIPP-
tool releases before 2014). Please see below for an example on how to replicate the
old behavior. Nevertheless, it's usage is highly discouraged!

The remaining command line arguments control the output of cube2mseed utility. An output directory can be
selected to which the converted time series data is written. Other arguments are provided to select the specific
miniSEED variant that is used for writing.

--output-dir=DIRECTORY

Save the resulting miniSEED files to this DIRECTORY. The directory must already exist and be writable!
Already existing files in that directory will not be overwritten unless the option --force-overwrite is
used as well.

--force-overwrite

If this option is used, already existing files in the output directory will be overwritten without mercy!

The default behavior, however, is not to overwrite already existing files. Instead a new file is created with an
additional number in between filename and extension.

--byte-order=ORDER

Set the byte order used for the miniSEED output. Valid values are BIG_ENDIAN or LITTLE_ENDIAN, each
selecting the respective byte order. Using the (default) value NATIVE as argument automatically changes the
byte order to the native byte order of the currently used computer platform (e.g. little endian on Intel PCs and
big endian on Sun SPARC machines).

--record-size=N

Set the record size of the miniSEED output.The record size is given in bytes and must be a power of two value
(e.g. 512, 1024, 2048, ...). By default 4096 byte long records are written.

--encoding=CODEC

Set the encoding scheme for the time series data. At the moment the following encoding schemes are sup-
ported:

INT-32 Uncompressed 32 bit integers.

FLOAT-32 Uncompressed IEEE single precision (32 bit) floating point numbers.

FLOAT-64 Uncompressed IEEE double precision (64 bit) floating point numbers.

STEIM-1 Steim-1 compressed integers (default).

STEIM-2 Steim-2 compressed integers.

Environment
The following environment variables can optionally be used to influence the behavior of the GIPPtool utilities.

5

cube2mseed

GIPPTOOLS_HOME This environment variable is used to find the location of the GIPPtools installation directo-
ry. In particular, the Java class files that make up the GIPPtools are expected to be located
in the 'java' subdirectory of GIPPTOOLS_HOME.

GIPPTOOLS_JAVA All utilities of the GIPPtools are written in the programming language Java and conse-
quently need a Java Runtime Environment (JRE) to execute. Use this variable to specify
the location of the JRE which should be used.

GIPPTOOLS_OPTS You can use this environment variable for additional fine-tuning of the Java runtime envi-
ronment. This is typically used to set the Java heap size available to GIPPtool programs.

GIPPTOOLS_LEAP The GIPPtools require up-to-date leap second information to correctly interpret Cube files.
Usually, this information is obtained from the leap-seconds.list file located in the
config subdirectory of the GIPPtools installation directory. This environment variable
can be used to provide a more up-to-date leap second list to GIPPtool programs.

It is usually not necessary to define any of those variables as suitable values should be selected automatically.
However, if the automatic detection build into the start script fails or you need to choose between different GIPP-
tool or Java runtime releases installed on your computer, these environment variables might become quite helpful
to troubleshoot the situation.

Diagnostics
Cube2mseed occasional will produce user feedback. In general, user messages are classified either as INFO,
WARNING or ERROR. The INFO messages are only displayed when the --verbose command line option is
used. They usually report about the progress of the program run.

More important are WARNING messages. In general, they warn about (possible) problems that may influence the
output. Although the program will continue with execution, you certainly should check the results carefully. You
might not have gotten what you (thought you) asked for.

Finally, ERROR messages inform about problems that can not be resolved automatically. Program execution
usually stops and the user must fix the problem first.

Exit codes
Use the following program exit codes when calling cube2mseed from scripts or other programs to see if the
program finished successfully. Any non-zero code indicates an ERROR.

0 Success.

64 Command line syntax or usage error.

65 Data format error.

66 Input file did not exist or could not be opened.

70 Error in internal program logic.

74 I/O error.

99 Other, unspecified errors.

Examples
1. To convert all Cube files recorded during an experiment simply use:

cube2mseed --verbose --output-dir=./mseed-out/ ./cube-in/

The program will recursively search for Cube files inside the cube-in subdirectory. The resulting miniSEED
files are written to the mseed-out subdirectory.

6

cube2mseed

While searching for Cube files in the cube-in directory cube2mseed will probably complain about files that
are not in the expected Cube file format. To get rid of the annoying warnings try the following command line:

cube2mseed --verbose --include-pattern=GIPP --output-dir=./mseed-out/ ./cube-in/

This will exclude all files not following the usual GIPP naming convention for Cube files. Also, if you are only
interested in the data recorded by the Cube with the number 544 you could modify the command line as follows:

cube2mseed --verbose --include-pattern='*.544' --output-dir=./mseed-out/ ./cube-in/

This works because Cube recorder by default use the unit id as file extension. You can also repeat the include
pattern option several times to pick more than one set of files:

cube2mseed --verbose --include-pattern='*.544' --include-pattern='*.545' --output-dir=./mseed-out/ ./
cube-in/

The last command will only process files written by Cube #544 and Cube #545.

2. To convert 30 seconds of Cube data from a single file starting at 1pm on February 16th you would use the
following command:

cube2mseed --trace-start=2010-02-16T13:00:00 --trace-length=30 --output-dir=./mseed-out/
02161251.034

The program will read from Cube file 02161251.034 from the current working directory and the converted
data will be written to the mseed-out subdirectory.

3. You can customize the window width of the 'sinc' resampling algorithm. The following line shows the com-
mand line argument necessary to change the window width from the default of 25 to a width of 30:

cube2mseed --resample=SINC,30 --output-dir=./mseed-out/ ./cube-in/

4. Backward compatibility. In 2014 the cube2mseed was completely rewritten and, besides other things, resam-
pling was added to the utility. Unfortunately, the much improved utility is not longer backward compatible! To
partially overcome the deficit, an additional "fake" resampler was implemented that more or less "replicates"
the behavior of older GIPPtool releases.

The following command line (applicable to GIPPtool releases 2013.268 and earlier

cube2mseed ---time-correction=NONE --output-dir=./mseed-out/ ./cube-in/

corresponds to the command line in newer (i.e. after 2014) GIPPtool releases:

cube2mseed --timing-control=RULE_BASED --fringe-samples=NOMINAL --resample=NONE --out-
put-dir=./mseed-out/ ./cube-in/

There is no emulation of the erstwhile STARTTIME time correction mode (i.e. the former com-
mand line option --time-correction=STARTTIME) that also was available in cube2m-
seed utilities released prior to 2014.

Files
$GIPPTOOLS_HOME/bin/cube2mseed

The cube2mseed "program". Usually just a symbolic link pointing to the standard GIPPtools start script.

$GIPPTOOLS_HOME/bin/gipptools

The GIPPtools start script. Almost all utilities of the GIPPtools package are started from this shell script.

7

cube2mseed

See also
GIPPtools(1), cube2ascii(1), cube2segy(1), cubeevent(1), cubeinfo(1), mseed2ascii(1), mseed2mseed(1),
mseed2pdas(1), mseed2segy(1), mseedcut(1), mseedinfo(1), mseedrecover(1), mseedrename(1)

Bugs and Caveats
• None so far.

8

	cube2mseed

