
1

Name
cube2ascii — convert Cube data to ASCII text format

Synopsis

cube2ascii [-v | --verbose] [--include-pattern=PATTERN]... [--trace-
start=TIMEMOMENT] [--trace-stop=TIMEMOMENT] [--trace-length=DURATION]
[--trace-offset=SHIFT] [--events=EVENTFILE] [--fringe-samples=MODE] [--
resample=ALGORITHM] [--output-dir=DIRECTORY [--force-overwrite]] [--
format=FORMAT] file | directory ...

cube2ascii [-h | --help] [--version]

Description

The cube2ascii utility reads Cube data from one or more files and converts them to ASCII text
format. If an input directory is given as argument, cube2ascii searches recursively for Cube files
inside that directory. The search can be shortened to contain only files with a name matching patterns
given by the --include-pattern option.

After the initial search for available Cube files is completed, the program will begin to index the data
contained in the respective files. This step is necessary so that the program later knows of all Cube
files belonging to the same continuous trace and about the correct chronological order.

As soon as the end of a continuous time series is detected, the utility will begin to work through
the (internal) lists of time windows that were requested by the user via the options --events, --
trace-start, --trace-stop, etc. The required samples are read from the Cube files, resampled
and converted to the ASCII text format. Finally, the result is written directly to standard output (i.e.
console) or saved in an output directory (use option --output-dir). Cube2ascii then returns back
again to scanning through the Cube input for more continuous recordings, processing one trace after
another.

Options

The program pretty much follows expected Unix command line syntax. Some of the command line
options have two variants, one long and an additional short one (for convenience). These are shown
below, separated by commas. However, most options only have a long variant. The equal sign (‘=’)
for options that take a parameter is required and can not be replaced by a whitespace.

-h, --help
Print a short summary of all available command line options and exit.

--version
Print the GIPPtools release information and exit.

-v, --verbose
This option increases the amount of information given to the user during the program execution.
By default (i.e. without this option) cube2ascii only reports warnings and errors. (Also see the
diagnostics section below.)

--include-pattern=PATTERN
Only read data from Cube files whose filename matches the given PATTERN. Files with a name
not matching the search PATTERN will be skipped and ignored. This option is quite useful to
speed up recursive searches through large subdirectory trees and can be used more than once in
the same command line.

cube2ascii

2

You can use the two wild card characters ('*' and '?') when specifying an include PATTERN (e.g.
'*.123'). Or alternatively, you can also use a predefined filter called GIPP that can be used to
exclude all files not following the usual GIPP naming convention for files recorded by Cubes.

Important

The given search PATTERN only applies to the filename but not to the names of the
(sub-)directories inside which the Cube file is located.

The following command line options are all used to specify an input time window for reading data
from the Cube files. It is considered an error to use --trace-start, --trace-stop and --
trace-length all at the same time. At most two of the three options may be used together. Also,
the option --trace-length cannot be used alone. It needs a --trace-start or --trace-
stop as anchor.

--trace-start=TIMEMOMENT
Begin converting Cube data at this moment in time. The format for the TIMEMOMENT
string is YYYY-MM-DDTHH:MM:SS.ssssss where YYYY-MM-DD represents the date and
HH:MM:SS.ssssss the time (fractions of seconds will be rounded to microsecond accuracy).
The letter 'T' in between date and time is used to distinguish between date and time part and
must be given as well. Example: To begin reading samples at 1pm on March 27th, 2007 use the
TIMEMOMENT string --trace-start=2007-03-27T13:00:00.

--trace-stop=TIMEMOMENT
Stop processing time series data after this moment in time. The format for the TIMEMOMENT
string is the same as with the --trace-start option.

--trace-length=DURATION
Stop processing samples after this time span. The DURATION is given in seconds and formatted
as SS.ssssss. Again, fractions of seconds will be rounded to microsecond accuracy. Example:
To extract 5 minutes of data use --trace-length=300.

A trace length of 2 minutes will be used as default setting if no trace length option is given but a
singular --trace-start or --trace-stop option is encountered.

--trace-offset=SHIFT
Use this option to shift the whole time window defined by the command line options above.
This option exists purely for convenience reasons as it would be easy to obtain the same effect
by adding SHIFT seconds to the trace start and stop times manually. In other words, using --
trace-offset just spares you doing the math when you have a list of event times (e.g. from
an earthquake catalog) but would like to extract a few seconds of data before the event as well.

The format of the trace offset value is SS.ssssss and it is given in seconds. Negative number
shift the window towards earlier times, positive number "delay" the window. The total length of
the time window is not affected by this option.

--events=EVENTFILE
In addition to the four time window options described above, it is also possible to use an event file
to define many time windows all at once. Using an event file makes it possible to convert more
than one time window per program run. Each line in the event file must begin with the start time
of a time window that should be converted to ASCII format. Optionally, the length and offset of
the time window may follow in the second and third column.

The event file contains up to three columns separated by spaces or tabulators. The three columns
are:

Column #1 Start time of the time window. Analog to the --trace-start command line
option. This column is mandatory.

cube2ascii

3

Column #2 Length of the time window. Analog to the --trace-length command line
option. If this column is missing a (default) trace length of 2 minutes is processed.

Column #3 An additional shift/offset is applied to the time window. Analog to the --
trace-offset command line option. This column is also optional.

Empty lines in the file are ignored. Everything following a '#' character (up to the end of the line)
is considered to be a comment and is skipped as well. Columns are counted from the beginning
of the line. This means you cannot define a trace offset (column #3) without having a trace length
(column #2) in the line first!

Note

The use of an event file is completely independent from the trace start, stop, length or
offset command line options. Especially, the --trace-length option only applies
to time windows given via --trace-start or --trace-stop but never to time
windows defined inside an event file!

Ignoring the nitty-gritty implementation details of Cube file format, Cube recordings basically consist
of a continuous stream of sample (amplitude) values, where occasional a single sample is additionally
timestamped with the precise time of its recording (taken from GPS). The following command line
options are used to control how the time information contained in the Cube files is transported into
the ASCII text format.

--fringe-samples=MODE
Determines how to treat samples that were recorded before the first GPS time fix or after the last
GPS time fix taken by the Cube unit. Determining the precise recording time of these "fringe
samples" is problematic because without a second time tag on the other side of the sample, the
precise sampling rate inside that segment cannot be computed. Valid options are:

SKIP Simply exclude all samples without good time control from the conversion. (De-
fault)

NOMINAL Include fringe samples assuming a perfect nominal sample rate (e.g. 50 Hz, 100
Hz, 200 Hz, ...; as configured in the Cube recorder setup).

CONSTANT Include fringe samples assuming a constant (linear) clock drift over the whole
recording. The clock drift is calculated from the very first and last available GPS
fix in the recording.

Usually, a Cube recording contains only a few seconds of data before the very first GPS time fix
occurs. At the end of recording, the time without GPS fix depends on the recorder configuration.
(GPS running continuous or in cycled mode? How long is the cycle?) So, unless you power down
and pick up the Cube unit immediately after the recording there should be no problem to just skip
and ignore all fringe samples, which is the default behavior.

The situation is different however, when the Cube is deployed in locations without (reliable) GPS
reception, e.g. in water or underground in a tunnel. Especially, if the Cube runs out of power
before it can obtain a last GPS fix. Here it might become important to include any recorded sample
despite the lack of good (GPS) time control. For these cases the NOMINAL and CONSTANT mode
are intended.

--resample=ALGORITHM
The sampling rate at which a Cube records data is derived from a build-in, high precision crystal
oscillator. But despite using high-quality components, a tiny arbitrary offset from its nominal
frequency remains. Causes for the offset include e.g. component aging and changes in temperature
that alter the piezoelectric effect in the crystal oscillator. Unfortunately, this results in a slightly
varying sampling rate during the recording that needs to be compensated by resampling the time
series. This command line option selects the resampling algorithm.

cube2ascii

4

Note

It is highly recommended that you stick to the default SINC algorithm unless you have
special needs and know what you do!

SINC Resample the Cube using a windowed 'sinc' interpolation with a normalized Black-
mann-Nuttall window. By default the window width is set to 25. (Resulting in a filter
kernel of 2x25+1=51 points.)

The width of the Blackmann-Nuttall window can be adjusted by appending the desired
width to the SINC keyword (separated by a single comma; no spaces). Please see
below for an example.

LINEAR Use a basic linear interpolation between samples.

NONE Simply copy the Cube input time series to the output without any modification to the
sample amplitudes at all! The only modification done by this algorithm is to (slightly)
shift the samples along the time axis. The recording time of the very first sample will
be used as start time of the time series. All following samples will be time shifted such
that a "perfect" sample period results. Obviously, the absolut timing error increases
as the converted time series grows in length!

Important

This NONE "resampler" simply fudges the recording time of the input sam-
ples! There is absolutely no resampling done by this algorithm (in a mathe-
matical sense). It's usage is highly discouraged!

The remaining command line arguments control the output of cube2ascii utility. An output directory
can be selected to which the converted time series data is written. Other arguments are provided to
select the specific formatting variant that is used for writing.

--output-dir=DIRECTORY
Save the resulting ASCII text files to this DIRECTORY. The directory must already exist and
be writable! Already existing files in that directory will not be overwritten unless the option --
force-overwrite is used as well.

--force-overwrite
If this option is used, already existing files in the output directory will be overwritten without
mercy!

The default behavior, however, is not to overwrite already existing files. Instead a new file is
created with an additional number in between filename and extension.

--format=FORMAT
Select one of the following predefined output formats:

ALL The combination of the HEADER and DATA format. (This is also the default
output format.)

HEADER Write only the header information. By itself this output format is probably pretty
useless. (It only exists, because the GIPPtools sibling program mseed2ascii also
provides a HEADER output format.)

Tip

If you just want to learn about the content of a Cube file without peek-
ing at the actual data, the cubeinfo utility is a much more appropriate
program.

cube2ascii

5

DATA For each sample (one per line) write the recording time (first column) followed
by one column for each recording channel. This is probably the most useful
output format if you plan to import the trace into another software package.

CHANNEL Write sample values, one columne per recording channel. The resulting file con-
tains no extra column for the recording time of the samples. Instead the start
time of the file and the sampling rate must be read from the single header line.

CHANNEL0,
CHANNEL1,
CHANNEL2,
CHANNELn

Output sample values of recording channel #0, #1, #2, ..., #n only (Cube record-
ing channels are numbered starting with 0.) Otherwise this single column output
format is like CHANNEL (see above).

Environment
The following environment variables can optionally be used to influence the behavior of the GIPPtool
utilities.

GIPPTOOLS_HOME This environment variable is used to find the location of the GIPPtools instal-
lation directory. In particular, the Java class files that make up the GIPPtools
are expected to be located in the java subdirectory of GIPPTOOLS_HOME.

GIPPTOOLS_JAVA All utilities of the GIPPtools are written in the programming language Java
and consequently need a Java Runtime Environment (JRE) to execute. Use
this variable to specify the location of the JRE which should be used.

GIPPTOOLS_OPTS You can use this environment variable for additional fine-tuning of the Java
runtime environment. This is typically used to set the Java heap size available
to GIPPtool programs.

It is usually not necessary to define any of those variables as suitable values should be selected auto-
matically. However, if the automatic detection build into the start script fails or you need to choose
between different GIPPtool or Java runtime releases installed on your computer, these environment
variables might become quite helpful to troubleshoot the situation.

Diagnostics
Cube2ascii occasional will produce user feedback. In general, user messages are classified either
as INFO, WARNING or ERROR. The INFO messages are only displayed when the --verbose
command line option is used. They usually report about the progress of the program run.

More important are WARNING messages. In general, they warn about (possible) problems that may
influence the output. Although the program will continue with execution, you certainly should check
the results carefully. You might not have gotten what you (thought you) asked for.

Finally, ERROR messages inform about problems that can not be resolved automatically. Program
execution usually stops and the user must fix the problem first.

Exit codes
Use the following program exit codes when calling cube2ascii from scripts or other programs to see
if the program finished successfully. Any non-zero code indicates an ERROR.

0 Success.

64 Command line syntax or usage error.

65 Data format error.

cube2ascii

6

66 Input file did not exist or could not be opened.

70 Error in internal program logic.

74 I/O error.

99 Other, unspecified errors.

Examples
1. To convert all Cube files recorded during an experiment simply use:

cube2ascii --verbose --output-dir=./ascii-out/ ./cube-in/

The program will recursively search for Cube files inside the cube-in subdirectory. The resulting
ASCII files are written to the ascii-out subdirectory.

While searching for Cube files in the cube-in directory cube2ascii will probably complain about
files that are not in the expected Cube file format. To get rid of the annoying warnings try the
following command line:

cube2ascii --verbose --include-pattern=GIPP --output-dir=./ascii-out/ ./cube-in/

This will exclude all files not following the usual GIPP naming convention for Cube files. Also, if
you are only interested in the data recorded by the Cube with the number 544 you could modify
the command line as follows:

cube2ascii --verbose --include-pattern='*.544' --output-dir=./ascii-out/ ./cube-in/

This works because Cube recorder by default use the unit id as file extension. You can also repeat
the include pattern option several times to pick more than one set of files:

cube2ascii --verbose --include-pattern='*.544' --include-pattern='*.545' --output-dir=./ascii-
out/ ./cube-in/

The last command will only process files written by Cube #544 and Cube #545.

2. To convert 30 seconds of Cube data from a single file starting at 1pm on February 16th you would
use the following command:

cube2ascii --trace-start=2010-02-16T13:00:00 --trace-length=30 --output-dir=./ascii-out/
02161251.034

The program will read from Cube file 02161251.034 from the current working directory and
the converted data will be written to the ascii-out subdirectory.

3. You can customize the window width of the 'sinc' resampling algorithm. The following line shows
the command line argument necessary to change the window width from the default of 25 to a
width of 30:

cube2ascii --resample=SINC,30 --output-dir=./ascii-out/ ./cube-in/

Files
$GIPPTOOLS_HOME/bin/cube2ascii

The cube2ascii "program". Usually just a symbolic link pointing to the standard GIPPtools start
script.

$GIPPTOOLS_HOME/bin/gipptools
The GIPPtools start script. Almost all utilities of the GIPPtools package are started from this shell
script.

cube2ascii

7

See also
GIPPtools(1), cube2mseed(1), cube2segy(1), cubeinfo(1), mseed2ascii(1), mseed2mseed(1),
mseed2pdas(1), mseed2segy(1), mseedcut(1), mseedinfo(1), mseedrecover(1), mseedrename(1)

Bugs and Caveats
• None so far.

	cube2ascii

